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Abstract

Empirical evidence suggests that many macroeconomic and financial time series are subject to occasional structural breaks.

In this paper we present analytical results quantifying the effects of such breaks on the correlation between the forecast and the

realization and on the ability to forecast the sign or direction of a time-series that is subject to breaks. Our results suggest that it

can be very costly to ignore breaks. Forecasting approaches that condition on the most recent break are likely to perform better

over unconditional approaches that use expanding or rolling estimation windows provided that the break is reasonably large.
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1. Introduction in market sentiments, burst or creation of speculative
Structural instability seems to characterize many

forecasting models fitted to economic and financial

data. In the most systematic study to date of a very

large set of macroeconomic time series, Stock and

Watson (1996) find evidence of structural instability

in the majority of the series they consider. Many

other studies have confirmed the presence of breaks

in economic and financial time series; see, inter

alia, Alogoskoufis and Smith (1991), Garcia and

Perron (1996), Bai and Perron (1998), Clements and

Hendry (1998), Pesaran and Timmermann (2002) and

Timmermann (2001).

Breaks or jumps in the parameters of forecasting

models could arise from factors such as major changes
0169-2070/$ - see front matter D 2003 International Institute of Forecaste

doi:10.1016/S0169-2070(03)00068-2

* Corresponding author. Tel.: +1-858-534-4860; fax: +1-858-

534-7040.

E-mail address: atimmerm@ucsd.edu (A. Timmermann).
bubbles, changes in monetary and debt management

(for example, from money supply targeting to infla-

tion targeting or from short-term to long-term debt

instruments). The end of a national or global recession

is another example that would be well suited to be

modeled as a discrete shift in the parameters of the

underlying data generating process.

Some models are even built around recurring shifts

in the parameters of the underlying data generating

process. For example, Hamilton (1989) studies

Markov switching models that are driven by a latent

variable process subject to discrete changes. Regime

switches seem to characterize a host of financial time

series including interest rates (Ang & Bekaert, 2002b;

Driffill & Sola, 1994; Gray, 1996) and stock market

returns (Ang & Bekaert, 2002b; David & Veronesi,

2001; Perez-Quiros & Timmermann, 2000). The

parameters may be drawn either from a finite number

of recurring states or from an expanding set of states
rs. Published by Elsevier B.V. All rights reserved.
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as in the Bayesian change-point setup considered

by Chib (1998).

In this paper we consider the problem of forecast-

ing under breaks in the data generating process and

characterize the factors that determine the loss in

directional forecasting accuracy from ignoring in-

formation about breaks. Unconditional methods for

estimation of a forecasting model such as a rolling or

an expanding window let the window size vary as a

deterministic function of time. These methods will

produce biased and inconsistent forecasts in the

presence of breaks. A conditional approach that

determines the window size on the basis of the

estimated point of the most recent break can be

expected to do better. We show this point more

formally and quantify the factors that determine the

gains from using a conditional approach.

Structural instability in the data generating process

could well have a significant impact on the perfor-

mance of existing forecasting methods. Unfortunately,

the implications for forecasting of such breaks have not

been extensively explored although it is known that

most econometric forecasting models perform very

poorly around cyclical turning points. Turning points

are of obvious interests to economists so it is important

to gain a better understanding of how best to design

and estimate forecasting models in the presence of

parameter instability. In the presence of breaks, it is not

clear, for example, that using the full data set to

estimate a forecasting model leads to better predictions

than if a carefully selected subset of recent data is used.

Instability in prediction models is particularly

important for identifying turning points or the ‘direc-

tion’ of the market. Since the seminal work by

Henriksson and Merton (1981) on market timing

and predictability of the signs of security returns,

there has been extensive interest in this problem in

both economics and finance. Leitch and Tanner

(1991) find that the correlation between a sign test

and the profits made from following investment

advice dominates the correlation between profits and

standard statistical measures of predictive accuracy

such as mean squared forecast error. Despite its

importance, the problem of sign predictability when

the underlying return generating process may have

undergone a structural change has not yet been

addressed in the forecasting literature. We consider

this issue in the context of a simple linear regression
model and compare both unconditional and condi-

tional approaches to determination of the window size

used in the estimation of a forecasting model.

Testing and estimation in the context of models

that are subject to structural instability has been the

subject of considerable research. Chow (1960) pro-

posed an F-test for a single structural break in a linear

regression model. This test assumes that the date of

the break is known. Brown, Durbin and Evans (1975)

developed Cusum and Cusum Squared tests to deal

with the case where the time of the break is unknown.

Recent work has extended these earlier tests in several

directions to allow for multiple breaks, unit root

dynamics and heteroskedasticity. Ploberger, Kramer

and Kontrus (1989), Hansen (1992), Andrews (1993),

Inclan and Tiao (1994), Andrews and Ploberger

(1996), Chu, Stinchcombe and White (1996), Bai

and Perron (1998, 2002) develop tests for the consis-

tent estimation of the size and timing of breaks. Elliott

and Mueller (2002) consider optimal tests for models

with either many or relatively few breaks.

The plan of the paper is as follows. Section 2

introduces the break point model and derives ana-

lytical results for the mean and variance–covariance

matrix of the joint distribution of the forecast and

realization. Section 3 demonstrates how to quantify

the market timing information in forecasting models

that account for breaks relative to models that ignore

these. Section 4 provides numerical examples that

illustrate the analytical results. Section 5 concludes

and discusses the empirical relevance of our findings.

Mathematical proofs are provided in Appendix A.
2. A simple break model

To keep the analysis tractable, we consider a linear

regression model subject to a single structural break

occurring at some date, T1:

yt ¼ xV t�1b1 þ ut; utfIIDð0; r2
1Þ;

t ¼ 1; 2; . . . ; T1

xVt�1b2 þ ut; utfIIDð0; r2
2Þ;

t ¼ T1 þ 1; . . . ; T þ 1:

ð1Þ

yt is the variable that is being predicted; xt�1, the

p�1 vector of pre-determined variables; bi (i = 1, 2)
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are p�1 vectors of regression coefficients; and ut is

a serially uncorrelated error term that is independently

distributed of xs for all t and s, possibly with a

shift in its variance from r1
2 to r2

2 at the time of the

break point.

Suppose we are interested in predicting yT+1
conditional on period T information, XT=( yT, xT,

yT�1, xT�1, . . .), and the knowledge of the break

at point t = T1, but not the size of the break. The

question is whether we should use only post break

observations or is it optimal to use some pre-break

observations as well? Denote the pre- and post-break

observations by v1VT1 and v2=T�T1, respectively,

and denote the ordinary least squares (OLS) estimate

of the regression coefficients estimated over the

sample v = v1+v2 by b̂m . Then the point forecast of

yT+1 is given by1:

ŷTþ1 ¼ xVT b̂m;

where

b̂m ¼
XT
t¼m

xt�1xVt�1

 !�1 XT
t¼m

xt�1yt

 !
;

and m=T1�v1+1z1.
In general it is complicated to derive analytical

expressions for measures of predictive accuracy.

However, in the very simple case where

p ¼ 1; r2
1 ¼ r2

2 ¼ r2;

utfIINð0; r2Þ; xtfIINðlx; x2Þ

we can derive tractable results for how the correlation

between yT+1 and ŷTþ1 depends on the size of the post-

break window (v2) relative to the size of the pre-break

window (v1).

In this simple case:

yTþ1 ¼ b2xT þ uTþ1; ð2Þ
1 An alternative predictor of the sign of yT+1 is developed by

Skouras (1999) who considers estimating b by maximizing

ST
t¼T1�v1þ1 I ½ytðxVt�1bÞ� where I[A] is an indicator function that

takes the value of unity if A>0 and zero otherwise.
ŷTþ1 ¼ b2xT þ ðb1 � b2ÞhmxT þ xT

PT
t¼m xt�1utPT
t¼m x2t�1

 !
;

ð3Þ
where

hm ¼ hmðT1; TÞ ¼
PT1

t¼m x2t�1PT
t¼m x2t�1

:

Appendix A proves the following result:

Proposition 1. Suppose that the forecast error ut and

the state variable xt are serially uncorrelated and

normally distributed,

ut
xt�1

� �
fIIN

0

lx

� �
;

r2 0

0 x2

� �� �
:

Then the mean and variance–covariance matrix of

ðyTþ1; ŷTþ1Þ are given by:

EðyTþ1Þ ¼ l1 ¼ b2lx; ð4Þ

EðŷTþ1Þ ¼ l2 ¼ b2lx þ
�1
�

� �
ðb1 � b2Þlx; ð5Þ

Var
yTþ1

ŷTþ1

� �
¼ A ¼ b2

2x
2 þ r2 g

g h2

� �
; ð6Þ

where

h2 ¼ V ð ŷTþ1Þ

¼ r2/ þ b2
2x

2 þ x2 v1

v

� �
ðb1 � b2Þ2w

þ 2b2ðb1 � b2Þx2 v1

v

� �
: ð7Þ

and

guCovð yTþ1; ŷTþ1Þ

¼ b2
2x

2 þ v1

v

� �
b2ðb1 � b2Þx2: ð8Þ

The results in Proposition 1 are exact. The param-

eters / and w are complicated functions of the

window size parameters and the means and variances

of the underlying series. They are defined by (A.8)

and (A.7) in Appendix A.

The proposition shows how the correlation be-

tween yT+1 and ŷTþ1 depends on the size of the

pre-break (v1) and post-break (v2) window and some

intuition can already be gathered from these expres-
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sions. Suppose that a window of v1z1 pre-break

observations has been used to estimate the regression

coefficient of x. Then the estimated mean of yT+1,

namely l2=b2lx+(v1/v)(b1�b2)lx, will be biased,

although the forecast error variance will also be

smaller than if only post-break observations were

used (v1=0). Likewise, the larger is the break size,

jb1�b2j, and the smaller the post-break relative to

pre-break observations (v2/v1) the weaker is the

correlation between predicted and realized values

and thus the lower the sign test statistic2.
3. Sign prediction under breaks

In this section we explore analytically the effects of

structural breaks on the directional forecasting accu-

racy of procedures that either ignore a break or

account for it. We focus on directional forecasting

accuracy since this is now an increasingly popular

metric for forecasting performance. In contexts such

as market timing this measure is closely related to the

economic value of forecasts used in asset allocation

decisions.

The probability of correctly predicting the sign of

yT+1 is given by PrðyTþ1ŷTþ1 > 0Þ. We measure sign

predictability by means of the nonparametric market

timing test statistic of Pesaran and Timmermann

(1992) which is asymptotically equivalent to the test

developed originally by Henriksson and Merton

(1981) but is more convenient to work with. Granger

and Pesaran (2000) show that this market timing

statistic can also be written as:

PT ¼
ffiffiffi
n

p
ðH � FÞ

ðp̂ð1� p̂Þ=pð1� pÞÞ1=2
; ð9Þ

where n is the number of observations in the fore-

casting sample; H, the ‘‘hit rate’’ and F is the ‘‘false

alarm rate’’, which are defined as:

H ¼
Prð yTþ1 > 0; ŷTþ1 > 0Þ

Prð yTþ1 > 0Þ ;

ð10Þ

F ¼
Prð yTþ1 < 0; ŷTþ1 > 0Þ

Prð yTþ1 < 0Þ :
2 Note that v1/v = 1/(1+v2/v1).
Finally p=Pr( yT+1>0), and p̂ ¼ Prðŷ>Tþ1 > 0Þ are the
probabilities that the realization and predicted values

of returns are positive, respectively. The hit minus

false alarm rate has a very intuitive interpretation as

the probability of correctly predicting the sign of a

positive return over the probability of wrongly pre-

dicting the sign of a negative return. It is equal to zero

for all forecasts that do not have any information

about the sign of returns so a necessary condition for

market timing information is a strictly positive value

of this statistic.

The unconditional distribution of ŷTþ1 is a mixture

normal and can be derived in the following manner.

Conditional on XmT = (xm�1, xm, . . ., xT) we have:

ŷTþ1jxmTfNðlmT ; r2
mT Þ;

where

lmT ¼ b2xT þ ðb1 � b2ÞhmxT ;

r2
mT ¼ x2T

r2PT
t¼m x2t�1

:

Denote the joint distribution of XmT by f (XmT). Then

the unconditional distribution of ŷTþ1 is given by:

f ð ŷTþ1Þ ¼
Z
xmT

u
ŷ
Tþ1

� l
mT

rmT

� �
f ðXmT ÞdXmT ;

where

u
ŷ
Tþ1

� l
mT

rmT

� �

¼ ð2pr2
mT Þ

�1=2
exp

�1

2

ŷ
Tþ1

� l
mT

rmT

� �2
" #

:

The probability Pr ŷTþ1 > 0ð Þ can now be computed

using f ð ŷ
Tþ1

Þ:

Pr ð ŷ
Tþ1

> 0Þ

¼
Z l

y¼0

Z
xmT

u
y� l

mT

rmT

� �
f ðXmT ÞdXmT dy:

In the case where xtfIIN(lx, x2) we have:

f ðXmT Þ ¼
YT
t¼m

u
xt�1 � lx

x

� �
:
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Computation of Pr ð ŷTþ1 > 0Þ in general involves

high dimensional multiple integrals. But under

xtfIIN(lx, x2) the integral for f ð ŷTþ1Þ can be

written in terms of xT,
PT1

t¼m x2t�1=x
2 and

PT
t¼T1þ1

x2t�1=x
2 which are independently distributed with

known distributions, namely IIN(lx, x2), v2v1ðk1Þ
and v2v2ðk2Þ , respectively, where v2viðkiÞ denotes a

non-central v2-distribution with the non-centrally pa-

rameter, ki=vi(lx/x)2. In Appendix A we show the

following result:

Proposition 2 . Under the assumptions of Proposition

1, the probabilitities underlying the sign prediction

problem are given as follows:

Pr ð ŷTþ1 > 0Þ

¼
Z l

y¼ 0

Z l

z¼�l

Z l

v2v1¼ 0

Z l

v2v2¼ 0

u
y� lmT

rmT

� �

� uðzÞf ðv2v1ðk1ÞÞf ðv
2
v2
ðk2ÞÞdz dv2v1 dv

2
v2
dy:

Pr ð yTþ1 > 0Þ ¼ u
b2lxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
2x

2 þ r2

q
0
B@

1
CA

PrTþ1 > 0; ŷ
Tþ1

> 0Þ ¼
Z l

y¼ 0

Z l

ŷ¼ 0

f ðy; ŷÞdy dŷ:

where

f ð y
Tþ1

; ŷ
Tþ1

Þ ¼
Z l

z¼�l

Z l

v2v1¼ 0

Z l

v2v2¼ 0

u
y
Tþ1

� b
2
ðxzþ l

x
Þ

r

� �
u

ŷ
Tþ1

� l
mT

rmT

� �
� uðzÞf ðv2v1ðk1ÞÞf ðv

2
v2
ðk2ÞÞdz dv2v1 dv

2
v2
:

This proposition characterizes the market timing

value of the forecast as a function of the parameters

of the underlying data generating process and the

design parameters of the estimation window. The

significance of the proposition lies in its reduction

of a high-dimensional problem to a far more tracta-

ble problem of a much lower dimension. In general,

computation of the sign probabilities require inte-

gration over an (T�m+1) dimensional space which,

by the proposition, can be reduced to integration

over a much smaller three or four dimensional

space.
In practice the computations of the sign probabilities

is best carried out by stochastic simulations. To com-

pute PrðŷTþ1 > 0Þnumerically, generateXmT
(i),UmT

(i) as

draws from the assumed distributions of xt and ut,

where UmT=(um, um+1, . . ., uTþ1) and as before

XmT= (xm�1, xm, . . ., xT). Then use these draws to co-

mpute ŷ
ðiÞ
Tþ1 and finally approximate Pr ð ŷTþ1 > 0Þ by:

PrRð ŷTþ1 > 0Þ ¼ 1

R

XR
i ¼ 1

Ið ŷðiÞTþ1Þ;

where I(a) takes the value of unity if a>0 and 0

otherwise. To compute the joint probabilities, for

given draws XmT
(i), UmT

(i), compute ŷ
ðiÞ
Tþ1 and yT+1

(i) as:

y
ðiÞ
Tþ1 ¼ b2x

ðiÞ
T þ u

ðiÞ
Tþ1; ð11Þ

ŷ
ðiÞ
Tþ1 ¼ b2x

ðiÞ
T þ ðb1 � b2ÞhðiÞm x

ðiÞ
T

þ x
ðiÞ
T

PT
t¼m x

ðiÞ
t�1u

ðiÞ
tPT

t¼mðx
ðiÞ
t�1Þ

2

 !
; ð12Þ

where

hðiÞm ¼
PT1

t¼mðx
ðiÞ
t�1Þ

2PT
t¼mðx

ðiÞ
t�1Þ

2
:

Then

PrRð yTþ1 > 0; ŷTþ1 > 0Þ ¼ 1

R

XR
i¼1

Ið ŷðiÞTþ1ÞIð y
ðiÞ
Tþ1Þ;

PrRð yTþ1 < 0; ŷTþ1 > 0Þ ¼ 1

R

XR
i¼1

Ið ŷðiÞTþ1ÞIð�y
ðiÞ
Tþ1Þ

These probabilities can easily be computed under a

break in error variances (r1 p r2) or when the

regressors are serially correlated, or the errors are t-

distributed and subject to conditional volatility.

The next section provides some numerical illustra-

tions of how parameter breaks affect market timing un-

der three common types of estimation window, namely

an expanding, a rolling and a post-break window.
4. Numerical results

The propositions in the previous sections allow us

to determine the exact value of the correlation

between the forecast and the realization as well as
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the value of the market timing statistic as a function

of the window of data used to estimate the forecasting

model and the size and timing of a break in the

linear regression model. In this section we compare

the predictive accuracy of three different methods for

window size determination, namely a post-break

method that only uses observations after the break, a

fixed-length rolling window method and an expand-

ing window method.

The results presented in this section assume that

b2 = 1, lx=0.5, r=6 and x=1.5. One hundred pre-

break observations are assumed to be available. In

the context of a return forecasting model these

parameters correspond to volatility of 6% and a

population R2-value of 0.06. This matches empirical

evidence on monthly US stock returns. The break in

the regression coefficient ranges from 0 to 3 which

is realistic in view of the substantial parameter

variation found empirically for this type of data.

The rolling window follows standard practice in

economics and finance and uses m=60 observations,

while the expanding window uses the full set of
Fig. 1. Correlation between realiz
vi=100 pre-break observations in addition to the

post-break data points (v2).

4.1. Correlations between forecasts and

realizations

Figs. 1 and 2 use Proposition 1 to plot the

correlation between yT+1 and ŷTþ1 as a function of

the value of b1 which tracks the break size jb1�b2j.
Since b2 is kept constant and the break size is varied

by changing the value of the pre-break parameter,

b1, the correlation is independent of break size for

the post-break window method. In contrast, the

expanding and rolling window methods mix the post-

and pre-break data samples so the correlations

arising from these approaches deteriorate as the

difference between b1 and b2 increases.
First consider the case with ten post-break ob-

servations (Fig. 1). In the absence of a break, the

expanding window method is most efficient and thus

produces the highest correlations for zero or very

small breaks. For these situations the correlation
ation, forecast (yTþ1; ŷTþ1).



Fig. 2. Correlation between realization, forecast (yTþ1; ŷTþ1).
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between yT+1 and ŷTþ1 exceeds 0.2. As the break

size grows larger than one, the post-break method

starts to dominate since it is not affected by the

resulting bias due to using pre-break data points.

The rolling window method also does better than

the expanding window since it is less biased as it

relies on relatively fewer pre-break data points.

As the distance to the most recent break grows to

100 observations (Fig. 2), the post-break method

increasingly starts to dominate the other approaches

and it is only for very small breaks that there is a gain

from using an expanding window. Even when a gain

is possible from using a rolling or an expanding

window, the gain tends to be very marginal. Notice

that the post-break window method always dominates

the rolling window in Fig. 2 since the latter is

inefficient as it does not use all post-break data.

4.2. Market timing values

Figs. 3 and 4 use Proposition 2 to show how the

market timing information in the predicted variable
depends on whether an expanding or rolling window

or a conditional break point method is used. The

figures plot the hit minus false alarm rate (H�F) as

a function of the break size. We compute the values of

this market timing statistic using the stochastic simu-

lation methods described in the previous section,

setting the number of replications, R, equal to 1

million. This is sufficiently large to make the results

quite precise.

Fig. 3 again assumes a small post break window of

ten observations, namely v2=10. Again b2 is kept

constant and the break size is varied by changing

the value of the pre-break parameter, b1. This means

that the hit minus false alarm rate is independent of

break size for the post-break window method while

it deteriorates for the expanding and rolling window

methods that mix the post- and pre-break data

samples.

In the absence of a break (b1=b2), as to be expected
the expanding and rolling windows produce better

sign predictions than the post-break window which

wrongly ignores pre-break data. However, as the



Fig. 3. Hit minus false alarm rate (indentical pre- and post-break variance).

Fig. 4. Hit minus false alarm rate (indentical pre- and post-break variance).
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break size increases, the post-break method begins

to dominate. In the presence of a break, both

the expanding and rolling windows produce biased

forecasts since they include pre-break data to esti-

mate the forecasting model. In fact these methods

generate a negative sign statistic for break sizes

above one.

When a longer post-break window of v2 = 25

observations is considered, H�F is constant around

12% irrespective of break size. This is approximately

4% higher than in Fig. 1 where less data was

available for parameter estimation (v2=10). The

expanding window generates negative values of the

market timing statistic for a break size above 1.2.

The rolling window only does marginally better. As

the break size jb1�b2j increases, the hit minus false

alarm rate continues to decline for the expanding and

rolling windows, suggesting that a forecasting model

that fails to account for a break can lead to a severe

deterioration in market timing performance.

Fig. 4 assumes that v1=v2=100, implying that a

break occurred 100 observations prior to the fore-

casting point. Since more post-break information is

now available, the hit minus false alarm rate rises to

14% for the post-break method. Although the rolling

window does not use any pre-break data3, it still

underperforms slightly relative to the post-break

method since it does not use all 100 post-break data

points and hence is inefficient. However, for break

sizes up to around 1, the three methods produce

similar results. When the break size increases beyond

this point, the performance of the expanding window

that relies on all pre-break data points quickly

deteriorates as the bias effect takes over.

So far, our results have assumed that there is no

break in the variance. In some situations, we would

expect that r2
2 p r1

2. As noted earlier, allowing for a

break in the variance is feasible provided that we

resort to numerical methods for evaluating the

variance of the forecast, ŷTþ1
4. To study the effect

of a simultaneous break in the mean and variance of

the forecasting model, we consider two scenarios. In

both cases, the pre-break volatility, r1, is kept fixed

at 6. Under the first scenario, we lower the volatility
3 The window size (60) is less than the time since the break

(100).
4 See the last section of Appendix A.
of the forecast error, r2 from 6 to 3, thus increasing

the predictive R2 and bringing down the noise in the

forecasting equation. Under the second scenario, we

increase r2 to 9, thus bringing down the predictive

R2.

Suppose that r1 = 6, r2 = 3. When only ten post-

break data points are available, the post-break win-

dow method generates a hit minus false alarm rate of

24%. This is higher than the market timing values

produced by the rolling and expanding window

methods provided that the break size is greater than

0.6. For breaks of this size or larger, the forecasts

associated with the unconditional window determina-

tion methods are heavily biased. With 25 post-break

data points (Fig. 5), H�F rises to a level around 30%

and the post-break method now dominates for all but

the very smallest break sizes.

Next suppose that r1=6, r2=9 so the R2 value of

the prediction equation is very low. Consequently,

H�F is only about 4% for the post-break method

based on ten observations, although this rises to 6%

when 25 post-break data points are available (Fig. 6)

and to 9% when 100 data points are available. For

break sizes up to around 0.8, it is better to use the

expanding window. The intuition for this finding is

that it is difficult to precisely estimate the parameters

of the forecasting model in the presence of very high

levels of noise as under this scenario. The bias in the

forecasts due to using pre-break data is, therefore,

more than made up for by reduced parameter estima-

tion uncertainty provided that the break size (and thus

the bias) is not too large.

We conclude from these results that it is important

to account for parameter instability in directional

forecasting models. If the size of the discrete

changes in the underlying parameters is small, it

may not be detectable and forecasters may be best

served by simply using an expanding window. As

the break size grows larger, however, precision in

directional forecasting requires a real time breakpoint

monitoring procedure that attempts to identify the

most recent break without too much delay and drops

data prior to the break. The comparative performance

of such a procedure relative to that of the popular

rolling window approach will of course depend on

the length of the rolling window, the size and

frequency of breaks and on how easily and quickly

breaks can be detected.



Fig. 6. Hit minus false alarm rate (higher post-break variance).

Fig. 5. Hit minus false alarm rate (lower post-break variance).
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5. Conclusion

Many economic and financial time series undergo

sudden, large breaks reflecting institutional changes,

regime switches or breakdowns in market mecha-

nisms. It is perhaps not surprising that many forecast-

ing models appear to be unstable and there may be

good theoretical reasons for these empirical findings.

Timmermann and Granger (2002) argue that certain

forms of predictability in financial returns are likely to

self-destruct as a consequence of the efficient market

hypothesis once the predictable patterns are publi-

cized and sufficient capital is allocated towards

exploiting them.

Forecasting series subject to structural breaks

poses a difficult problem, particularly if one is

interested in the sign of the variables as is frequently

the case. In this paper we characterized analytically

the factors that determine the forecasting perfor-

mance of standard approaches to window selection

when the true data generating process undergoes

breaks.

We considered both the case with a pure break in

the mean as well as cases with a simultaneous break

in the mean and variance of the forecasting model.

While the latter case is more complicated, it is

intuitively clear how a break in the variance affects

our results. If the post-break variance is lower than

the pre-break variance, the new data after the break

is less noisy than the pre-break data and the predic-

tive R2 higher. This will lead to better performance

of the post-break estimation window compared with

rolling and expanding window methods. Conversely,

if the post-break variance is higher than the pre-

break variance, it will generally be more worthwhile

to accept some bias in the parameter estimates of the

forecasting model in exchange for lower parameter

estimation uncertainty. This will benefit expanding

and rolling window approaches that typically use

pre-break data over a pure post-break estimation

approach.

Our results demonstrate the importance to direc-

tional forecasting of correctly selecting the window

used to estimate the forecasting model. On the down-

side, a forecasting approach that conditions on a false

breakpoint risks being inefficient as it does not use

the full set of available data. On the upside, an

approach that succeeds in correctly identifying a
break can reduce the bias inherent in the rolling

window and expanding window forecasts. When

breaks are reasonably large and the distance to the

most recent break is not too great, our results suggest

that such gains can be very significant.

These findings are highly relevant to empirical

forecasting. In Pesaran and Timmermann (2002) we

find significant market timing gains from condition-

ing on the estimated time of the most recent break

point in an out-of-sample forecasting model of US

stock returns. When a reversed ordered Cusum

squared method is used to determine the time of

the most recent break, the percentage of correctly

predicted signs of a monthly return forecasting

model rises from 61.6% (based on an expanding

window) to 65.7%. The results presented in this

paper help to interpret such empirical findings.
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Appendix A

Proof of proposition 1. The moments of qm are key

to the distribution of ŷTþ1 under different window

sizes. To derive these, first note that

hm ¼
PT1

t¼m x2t�1PT1
t¼m x2t�1 þ

PT
t¼T1þ1 x2t�1

;

and under xt /xfIIN(lx /x, 1) we have

hmf
d

v2m1ðk1Þ
v2m1ðk1Þ þ v2m2ðk2Þ

;

where v2miðkiÞ is distributed as a non-central v2 with mi
degrees of freedom and the non-centrality parameter

ki=vi(lx/x)2. Recall that m1=T1�m+1 and m2=T�T1.

Hence hm has a doubly non-central beta distribution

with parameters m1/2 and m2/2 and the non-centrality
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parameters k1 and k2
5. Approximating each of the

non-central v2 variables in hm and using Patnaik’s

approximation (Patnaik, 1949), we have:

hm f
appr ðm1=2Þ þ 2k1

ðm1=2Þ þ k1

� �
ðm2=2Þ þ k2
ðm2=2Þ þ 2k2

� �
Betað f1; f2Þ;

where

fi ¼
ððmi=2Þ þ kiÞ2

ðmi=2Þ þ 2ki
:

But noting that ki= mi(lx /x)2 it is readily seen that

fi= mik where

k ¼ ½1þ 2ðlx=xÞ2�2

2þ 8ðlx=xÞ2
; ðA:1Þ

and

ðm1=2Þ þ 2k1
ðm1=2Þ þ k1

� �
ðm2=2Þ þ k2
ðm2=2Þ þ 2k2

� �
¼ 1:

Hence hm fappr Betað f1; f2Þ and E(hm) and E(hm
2) can be

directly obtained from the moments of the (central)

beta distribution:

EðhmÞc
f1

f1 þ f2
¼ m1

m1 þ m2
¼ m1

m
;

Eðh2mÞc
f1ð f1 þ 1Þ

ð f1 þ f2Þð f1 þ f2 þ 1Þ

¼ km1ð1þ km1Þ
kðm1 þ m2Þ½kðm1 þ m2Þ þ 1�

¼ m1
m

� � 1þ km1
1þ km

:

Under the assumptions stated in Proposition 1, the

conditional distribution of ŷTþ1 given XT=(xT, xT�1,

. . .) is:

EðŷTþ1AXT Þ ¼ b2xT þ ðb1 � b2ÞhmxT ; ðA:2Þ

or, unconditionally,

Eð ŷTþ1Þ ¼ b2lx þ ðb1 � b2ÞEðhmxT Þ:
5 See, for example, Johnson and Kotz (1970) pages 197–198.
Also since hm depends on x1, . . ., xT�1, and the xt’s are

IIN, then hm and xT are independently distributed:

EðhmxT Þ ¼
m1
m

� �
lx;

and

Eð ŷTþ1Þ ¼ b2lx þ
m1
m

� �
ðb1 � b2Þlx:

Now consider the second moments of ðyTþ1; ŷTþ1Þ.
It is easily seen that

V ðyTþ1Þ ¼ b2
2x

2 þ r2:

To derive V ð ŷTþ1Þ we note that:

V ð ŷTþ1Þ ¼ E½V ð ŷTþ1AXT Þ�

þ V ½Eð ŷTþ1AXT Þ�: ðA:3Þ

Under r1
2 =r2

2 =r2, the conditional variance of ŷTþ1 is

given by:

V ð ŷTþ1AXT Þ ¼
r2x2TPT
t¼m x2t�1

:

Therefore, using the expression for Eð ŷTþ1AXT Þ
given by (A.2) we have:

h2 ¼ V ðŷTþ1Þ

¼ r2E
x2TPT

t¼m x2t�1

 !
þ V ½b2xT þ ðb1 � b2ÞhmxT �:

ðA:4Þ

But

V ½b2xT þ ðb1 � b2ÞhmxT � ¼ x2 þ ðb1

� b2Þ
2
E hmxT � lx

m1
m

� �2� �

þ 2b2ðb1 � b2ÞE ðxT � lxÞ hmxT � lx

m1
m

� �h i
;

ðA:5Þ

and after some algebra yields:

V ½b2xT þ ðb1 � b2ÞhmxT � ¼ b2
2x

2 þ m1
m

� �
� ðb1 � b2Þ

2x2w þ 2
m1
m

� �
b2ðb1 � b2Þx2:

ðA:6Þ
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where

w ¼ ð1þ km1Þ þ ðm2=mÞðlx=xÞ2

1þ km
: ðA:7Þ

To evaluate E x2T=
PT

t¼m x2t�1

� �
, first note that:

mx2TPT
t¼m x2t�1

¼ ðx2T=xÞ2PT
t¼mðxt�1=xÞ2=m

and since xt/xfIIN(lx/x, 1), then

mx2TPT
t¼m x2t�1

fd½tmðd; kÞ�2;

where tm(d, k) is distributed as a double non-central t-

distribution with m degrees of freedom and the non-

centrality parameters d=lx /x and k=m(lx /x)2. Using

results in Johnson and Kotz (1970), p. 214, eq. 25) we

now have:

/ ¼ E
x2TPT

t¼m x2t�1

 !
¼ 1

2

� �
exp � 1

2
k

� �
ð1þ d2Þ

�
Xl
j¼0

ðð1=2ÞkÞÞj

j!

Cðð1=2Þðm � 2Þ þ jÞ
Cðð1=2Þm þ jÞ : ðA:8Þ

Substituting (A.8) and (A.6) in (A.4) we have:

h2 ¼ V ðŷTþ1Þ

¼ r2/ þ b2
2x

2 þ x2 m1
m

� �
ðb1 � b2Þ2w

þ 2b2ðb1 � b2Þx2 m1
m

� �
:

Similarly

guCovðyTþ1; ŷTþ1Þ

¼ E

(
½b2ðxT � lxÞ þ uTþ1�

"
b2ðxT � lxÞ

þ ðb1 � b2Þ hmxT � lxm1
m

� �

þ xT
PT

t¼m xt�1utPT
t¼m x2t�1

#)

¼ b2
2x

2 þ b2ðb1 � b2Þx2 m1
m

� �
:

Collecting the above results we now have:

yTþ1

ŷTþ1

0
@

1
AfF

b2lx

b2lx þ m1
m

� �
ðb1 � b2Þlx

0
@

1
A; A

8<
:

9=
;;

where

A ¼
b2
2x

2 þ r2 g

g h2

0
@

1
A:

Break in error variances

In the case where r1
2 p r2

2, the above distributional

results hold, except that the unconditional variance of

ŷTþ1 can no longer be derived analytically. In this case

we have:

V ðŷTþ1AXT

¼ x2T
r2
1

PT1
t¼m x2t�1 þ r2

2

PT
t¼T1þ1 x2t�1PT

t¼m x2t�1

� �2
0
B@

1
CA;

and since xT is distributed independently of xT�1,

xT�2, . . . we have:

E½V ðŷTþ1AXT Þ�

¼ ðl2
x þ x2Þr2

1E

PT1
t¼m x2t�1PT
t¼m x2t�1

� �2
2
64

3
75

þ ðl2
x þ x2Þr2

2E

PT
t¼T1þ1 x2t�1PT
t¼m x2t�1

� �2
2
64

3
75: ðA:9Þ

The remaining terms, namely V ½EðŷTþ1AXT Þ� ,
Cov ðyT þ 1; ŷT þ 1Þ , and V( yT+1) are derived as

before with r2 in the expression for these terms

replaced by r2
2.

The expectations in (A.9) can be computed by

stochastic simulation, noting that by assumption

xtfIIN(lx, x2). Let xt�1
(r) be the (t�1)th observa-

tion in the rth draw and let r go from 1 to R, the

number of replications. We then have the following

approximation:

E

PT1
t¼m x2t�1PT
t¼m x2t�1

� �2
2
64

3
75c 1

R

XR
r¼1

PT1
t¼mðx

ðrÞ
t�1Þ

2

PT
t¼mðx

ðrÞ
t�1Þ

2
� �2
2
64

3
75:



5

M.H. Pesaran, A. Timmermann / International Journal of Forecasting 20 (2004) 411–425424
Similarly

E

PT
t¼T1þ1 x2t�1PT
t¼m x2t�1

� �2
2
64

3
75c 1

R

XR
r¼1

PT
t¼T1þ1ðx

ðrÞ
t�1Þ

2

PT
t¼mðx

ðrÞ
t�1Þ

2
� �2
2
64

3
75:

5

Proof of proposition 2. To compute the probabilities

that yT+1>0, ŷTþ1 > 0 as well as their joint

probabilities, note that

lmT ¼ðxzþ lxÞ
 

b2

þ ðb1 � b2Þ
v2v1ðk1Þ

v2v1ðk1Þ þ v2v2ðk2Þ

!
;

r2
mT ¼ ðxzþ lxÞ2

r2

v2v1ðk1Þ þ v2v2ðk2Þ
; zfNð0; 1Þ:

Consider now Pr( yT+1>0). We know from direct

evaluation that:

f ðyTþ1Þ ¼ u
yTþ1 � b2lxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
2x

2 þ r2

q
0
B@

1
CA:

The same result can also be obtained using the

mixture normal approach, namely:

f ðyTþ1Þ ¼
Z l

xT¼�l
u

yTþ1 � b2xT

r
Þu xT � lx

x

� �
dxT ;

�

and noting thatZ l

xT¼�l
u

yTþ1 � b2xT

r

� �
u

xT � lx

x

� �
dxT

¼ u
yTþ1 � b2lxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
2x

2 þ r2

q
0
B@

1
CA;

as required.

The remaining probabilities in the PT statistic can

be similarly computed using the conditional joint

probability distributions of ðyTþ1; ŷTþ1Þ . Using (2)

and (3) it is easily seen that conditional on XmT, yT+1
and ŷTþ1 are independently and normally distributed,

and

f ðyTþ1; ŷTþ1jXmT Þ

¼ u
yTþ1 � b2xT

r

� �
u

ŷTþ1 � lmT

rmT

� �
:

Hence, unconditionally

f ðyTþ1; ŷTþ1Þ ¼Z l

z¼�l

Z l

v2m1¼0

Z l

v2m2¼0

u
yTþ1 � b2ðxzþ lxÞ

r

� �
u

ŷTþ1 � lmT

rmT

� �
uðzÞf ðv2v1ðk1ÞÞf ðv

2
v2
ðk2ÞÞdz dv2v1 dv

2
v2
:

and

PrðyTþ1 > 0; ŷTþ1 > 0Þ ¼
Z l

y¼0

Z l

ŷ¼0

f ðy; ŷÞdy dŷ:
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